CALCULATING SUNSHINE HOURS FROM PYRANOMETER / SOLARIMETER DATA

CONTENTS

1. Introduction 1
2. Estimating Potential Solar Radiation 2
3. Totalising Sunshine Hours 3
4. References 3
5. Example Program 3

1. INTRODUCTION

For many years sunshine hours have been recorded using manually operated meteorological stations. This measurement was originally developed as a means of recording integrated global solar radiation, before the advent of electronics. By using modern instruments and datalogging systems, there are now often more appropriate ways of recording solar radiation for scientific applications. However, because there is an archive of historical sunshine data, and also because sunshine hours are now commonly used as a measure which the public can relate to (normally in weather forecasts and tourist brochures), there is a requirement to continue making these measurements.

Traditionally this has been done using a CampbellStokes recorder, which consists of a glass sphere with a piece of card held at a defined distance behind the glass. The card is graduated with time intervals which match the movement of the image of the sun as it tracks across the sky. If the sun is strong enough then the focused beam carbonises the card leaving a trace. The length of the trace equates to sunshine duration. However, reading the cards always involves a degree of subjectivity and the design does not lend itself to automation.

A relatively recent formal definition of sunshine duration by the World Meteorological Organisation ${ }^{[1]}$ has allowed the development of automatic instruments for measuring sunshine hours. This defines sunshine hours as 'the sum of the time intervals (in hours) during which the direct (normal) solar irradiance exceeds a threshold of $120 \mathrm{Wm}^{-2}$.

The most complex (and most accurate) of these instruments are tracking pyrheliometers, where a collimated sensor automatically moves to track the movement of the sun. This reads the direct beam radiation only. Any reading over $120 \mathrm{Wm}^{-2}$ is defined as being sunshine.

Other motorised sensors have been developed which, rather than tracking the sun, have quickly rotating shade bands. These sensors detect the direct beam component of radiation by measuring the maximum difference in measured radiation as the shade band rotates. However, as this type of sensor does not truly track the sun it requires regular adjustment to take into account the seasonal changes in solar declination.

Both of the above types of sensor are relatively expensive and have moving parts requiring extra power. An alternative technique which does not involve any moving parts is the combination of two pyranometers, one with a shadow ring (which limits detection to diffuse radiation) and one which is normally exposed to record total global radiation. The difference between these two measurements is the direct beam component. One complication with these sensors is that they are conventionally set up on a horizontal plane while the definition of 'sunshine' is for a surface normal to the sun's rays. As these sensors usually have a good 'cosine response', it is possible to correct these readings to give an equivalent normal reading if the sun's elevation angle is known. A Campbell Scientific datalogger can be programmed to estimate the elevation angle at any instant, where the latitude and longitude of the site are known (using virtually identical theory to that
given below), thus enabling accurate estimates of sunshine hours. However, this type of sensor set-up is still relatively expensive and the shadow ring requires regular adjustment to compensate for seasonal changes in solar declination.

A much simpler approach is to try to estimate sunshine hours from the single pyranometer/ solarimeter of the type normally installed on most weather stations. As these sensors measure total global radiation the normal definition of 'sunshine' cannot be used. Simple fixed thresholds, as often used in low grade weather stations, do not give reliable answers either, as diffuse radiation from a completely cloudy sky in the summer will often exceed direct beam radiation in the winter.

An alternative algorithm has recently been suggested by workers at the Royal Dutch Meteorological Institute (KNMI) ${ }^{[2]}$. They have proposed and tested an algorithm which defines sunshine as being when the measured global radiation (S) is greater than 0.4 times the potential solar radiation outside the earth's atmosphere on a horizontal surface (S_{o}). One long term test of this algorithm showed that estimates of sunshine hours were on average within 0.9 hours of the daily total.

While this might appear to give rather poor accuracy compared to that one would expect for totalised solar radiation, they consider it accurate enough for normal non-scientific use of sunshine hour data. As the sensor can also be used to make accurate solar radiation measurements, scientific data can be collected at the same time.

The remainder of this Technical Note describes how such an algorithm might be programmed into a Campbell Scientific datalogger.

2. ESTIMATING POTENTIAL SOLAR RADIATION

The solar radiation outside the earth's atmosphere is well defined and is known as the solar constant. Although this varies slightly during the year an accepted average value is $1373 \mathrm{Wm}^{-2}$. This value is constant for a surface normal to the sun's rays, as opposed to the horizontal exposure of a solarimeter. The potential solar radiation $\left(\mathrm{S}_{0}\right)$ on a horizontal surface outside the earth's atmosphere is calculated in Wm^{-2} from:
$S_{0}=1373 \sin \phi$
where ϕ is the elevation angle of the sun. $\operatorname{Sin} \phi$ is computed from

$$
\begin{equation*}
\sin \phi=\sin d \sin l+\cos d \cos l \cos \left[15\left(t-t_{0}\right)\right] \tag{2}
\end{equation*}
$$

where d is the solar declination angle, l is the latitude of the site, t is clock time and t_{0} is the time of solar noon. The declination angle is often evaluated using several terms of a Fourier series, but, since Campbell Scientific dataloggers are particularly adept at evaluating polynomials, it is better to approximate $\sin d$ using a polynomial:
$\sin d=-0.37726-0.10564 \mathrm{j}+1.2458 \mathrm{j}^{2}$
$-0.75478 j^{3}+0.13627 j^{4}-00572 j^{5}$
where j is day of the year/100. As the dataloggers (with the exception of the CR9000) do not include a cosine function the cosine is computed from the trigonometric identity:
$\cos d=\left(1-\sin ^{2} d\right)^{1 / 2}$
For running the sunshine hours algorithm, it is assumed that the user always sets the clock to standard time (not daylight saving time). The time, t, needed for eq. 2 is therefore just the datalogger clock time. The time of solar noon is given by:
$\mathrm{t}_{\mathrm{o}}=12-\mathrm{L}_{\mathrm{c}}-\mathrm{E}_{\mathrm{t}}(\mathrm{hr})$
where L_{c} is a longitude correction and E_{t} is the 'Equation of Time'. The longitude correction is a user-supplied parameter. It is calculated by determining the difference between the longitude of the site and the longitude of the standard meridian. Standard meridians are at 0, 15, 30.. 345 degrees. Generally time zones run approximately +7.5 to -7.5 degrees on either side of a standard meridian, but this varies depending on political boundaries. The user should check an atlas to get both the longitude and the standard meridian for the site (as well as the latitude, which is also needed for eq. 2). The longitude correction is computed from:
$\mathrm{L}_{\mathrm{c}}=\left(\mathrm{L}_{\mathrm{s}}-\mathrm{L}\right) / 15$
If the longitude of the site were $\mathrm{L}=117$ degrees, and the longitude of the standard meridian were $L_{s}=120$ degrees, then L_{c} would be $(120-117) / 15=0.2 \mathrm{hr}$. If the longitude of the site were 123 degrees, then L_{c} would be -0.2 hour.

The Equation of Time is an additional correction to the time of solar noon that depends on day of the year. Again, a polynomial is used for the computation. Two equations are used, one for the first half of the year, and one for the second. For the first half,

$$
\begin{array}{r}
E_{t}=-0.04056-0.74503 j+0.08823 j^{2}+2.0516 j^{3} \\
-1.8111 j^{4}+0.42832 j^{5} \tag{7}
\end{array}
$$

where $\mathrm{j}=$ day of the year/100 (as defined above).
For the second half (day of the year>180),
$E_{t}=-0.05039-0.33954 \mathrm{j}_{2}+0.04084 \mathrm{j}_{2}{ }^{2}+1.8928 \mathrm{j}_{2}{ }^{3}$

$$
\begin{equation*}
-1.7619 \mathrm{j}_{2}{ }^{4}+0.4224 \mathrm{j}_{2}{ }^{5} \tag{8}
\end{equation*}
$$

where $\mathrm{j}_{2}=($ day of the year-180)/100.

3. TOTALISING SUNSHINE HOURS

Using the above equation S_{0} can be calculated at any instant. The program example that follows shows how these equations can be entered in a datalogger program in subroutine 1. You must know the longitude and latitude of your installation and calculate the latitude correction manually for entry into the program.

To totalise sunshine hours the program compares 0.4 times the current solar radiation with the current value of S_{0}. If the value is higher than S_{0} then a constant (equivalent to the scan interval in hours) is added to the daily total. This program also calculates the more scientifically valid integrated solar radiation. (See program instructions in Table 1, entries 14 and 15.)

One of the limitations in the above theory is that the threshold figure of 0.4 * S_{0} can become very small at low sun angles when the radiation is low anyway. However, most radiation sensors used do not have a perfect 'cosine response' to variations in sun angle especially at low elevation angles and they can also suffer from zero offsets (especially when temperature is changing rapidly as it can do at dawn and dusk). Furthermore errors in levelling the sensor can cause proportionally large errors in the estimate of solar radiation at low angles. This makes this technique subject to large errors at low solar elevations. As direct beam radiation is attenuated greatly at these angles other standard techniques of measuring sunshine duration would normally not record 'sunshine' anyway, so this technique will often lead to an overestimation of sunshine hours.

To overcome this problem an additional refinement can be made to ignore 'sunshine' when the elevation is very low. In the program below, this is incorporated by only adding to the total of sunshine hours if $\sin \phi$ is greater than, say, 0.1, which equates to an elevation greater than six degrees. The exact cut-off point is, however, a subjective decision. For instance, you may choose to ignore readings if the site layout prevents the sensor 'seeing' the direct beam at low elevations.

> WARNING: Campbell Scientific recommends the use of a high quality sun screen lotion when exposing your skin to solar radiation for large values of sunshine hours!

4. REFERENCES

[1] WMO, 1986: Revised instruction manual on radiation instruments and measurements WMO/TD No, 149, ed. C. Frohlich and J. London (World

Climate Research Programme publications series 7) WMO - Geneva Switzerland.
[2] Slob, W.H. and W.A.A. Monna 1991: Bepaling van directe en diffuse straling en van
zonneschijndurr uit 10-minuutwaarden van globale straling. KNMI TR-136 (FM), Koninklijk Nederlands Meteorologisch Instituut - De Bilt/The Netherlands.

Acknowledgements

Some of the theory and text used in this Technical Note was produced by G.S. Campbell, Dept. of Crop and Soil Sciences, Washington State University.

5. EXAMPLE PROGRAM

Program: Example sunshine hours program Flag Usage: None
Input Channel Usage: 1 (SE) for pyranometer Excitation Channel Usage: None
Control Port Usage: None
Pulse Input Channel Usage: None
Output Array Definitions:
Array 110 gives Day, Hrs-Min, Totalsunshinehrs, Total solar radiation (MJ m-2)
Sunshine hours so far today stored inlocation 3

```
* 1
Table 1 Programs
Sec. Execution Interval
Every minute
01: P1 Volt (SE)
01: 1 Rep
02: \(35 \quad 2500 \mathrm{mV} 50 \mathrm{~Hz}\) rejection Range
03: 1 IN Chan
04: 1 Loc [:W m-2]
05: 100 Mult
06: 0.0000 Offset
```

Example measurement of a pyranometer giving
10 mV at $1000 \mathrm{Wm}^{-2}$

02: P86	Do	
01: 01	Call Subroutine 1	

Call sub 1 to calculate S_{o} and the sunshine threshold

03: P88	If $X<=>Y$	
01: 1	X Loc W m-2	
02: 3		>=
03: 2	Y Loc Threshold	
04: 30		Then Do

If the solar radiation is greater than the threshold

| 04: P89 | If $X<=>F$ |
| ---: | :--- | :--- |
| 01: 51 | X Loc $\sin (1)$ |
| 02: 3 | $>=$ |
| 03: 0.1 | F |
| 04: 30 | Then Do |

AND $\sin (I)$ is $>=0.1$ (elevation angle >6 degrees)

05:	P34	$Z=X+F$
01:	3	X Loc Sun hrs
02:	.01667	F
03:	3	Z Loc [:Sun hrs]

Increment today's sunshine hours

06: P95	End
07: P95	End
08: P92	If time is
01: 0	minutes into a
02: 1440	minute interval
$03: 10$	Set high Flag 0 (output)

At midnight set the output flag

```
09: P77 Real Time
    01: 120 Day,Hour-Minute
```

Store the time

10: P70	Sample
01: 1	Reps
02: 3	Loc Sun hrs

Store sunshine total for previous day
Then reset the total

11: P91	If Flag/Port
01: 10	Do if flag 0 (output) is high
02: 30	Then Do

Set above at midnight only

12:	P30	$\mathrm{Z}=\mathrm{F}$
01:	0.0000	F
02:	00	Exponent of 10
03: 3	Z Loc [:Sun hrs]	

Reset sunshine hours to zero

13: P95	End
14: P37	$\mathrm{Z}=\mathrm{X} * \mathrm{~F}$
01: 1	X Loc W m-2
02: 0.06	F 60 sec / 1000
03: 5	Z Loc [:MJ m-2]

Convert S into MJ m² per scan interval

| 15: P72 | Totalize |
| ---: | :--- | :--- |
| 01: 1 | Rep |
| 02: 5 | Loc MJ m-2 |

Totalise radiation as $\mathrm{MJ} \mathrm{m}^{-2}$

16:	P	End Table 1
*	2	Table 2 Programs
01:	0.0000	Sec. Execution Interval
01:	P	End Table 2
*	3	Table 3 Subroutines
$01:$	P85	Beginning of Subroutine
$01:$	1	Subroutine Number

Subroutine which calculates S_{0} and threshold radiation for sunshine

| 02: \quad P30 | $\mathbf{Z}=\mathbf{F}$ |
| ---: | :--- | :--- |
| 01: 54 | \mathbf{F} |
| 02: 0 | Exponent of 10 |
| 03: 47 | Z Loc [: latitude] !!! User entry |

User entered latitude

| 03: P30 | $\mathbf{Z = F}$ |
| ---: | :--- | :--- |
| 01: 0 | \mathbf{F} |
| 02: 0 | Exponent of 10 |
| 03: 48 | Z Loc [: Ingt. cor] !!! User entry |

User entered longitude correction

04 :	P18	Time
01:	2	Hours into current year (max. 8784)
02 :	0	Mod/by
03 :	42	Loc [:clndr day]
05:	P37	$\mathrm{Z}=\mathrm{X}$ * F
01:	42	x Loc clndr day
02 :	. 04167	F
03 :	42	Z Loc [:clndr day]

Convert hours into Julian day

```
06: P37 Z=X*F
    01: 42 X Loc clndr day
    02: .01 F
    03: 41 z Loc [:day/100 ]
```

Scale days for polynomial

```
07: P55 Polynomial
    01: 1 Rep
    02: 41 X Loc day/100
    03:43 F(X) Loc [:sin(d) ]
    04: -. 37726 C0
    05: -. 10564 C1
    06: 1.2458 C2
    07: -.75478 C3
    08:.13627 C4
    09: -.00572 C5
```

Calculate $\sin (d)$ using polynomial approximation

08 :	P89	If $\mathrm{X}<=>\mathrm{F}$
01:	42	x Loc clndr day
02 :	3	> $=$
03 :	180	F
04 :	30	Then Do
$09:$	P34	$\mathrm{Z}=\mathrm{X}+\mathrm{F}$
01:	41	x Loc day/100
02 :	-1.8	F
03 :	40	Z Loc [:eq of tim]

Equation of time polynomial for the 2nd half of year

10: P55	Polynomial	
01:	1	Rep
02:	40	X Loc eq of tim
03:	40	$F(X)$ Loc [:eq of tim]
04:	-.05039	C0
05:	-.33954	C1
06:	.04084	C2
07:	1.8928	C3
08:	-1.7619	C4
09:	.4224	C5
11: P94	E1se	

Equation of time for the first half of the year

12:	P55	Polynomial	
01:	1	Rep	
02 :	41	x Loc day/100	
03 :	40	F(X) Loc [:eq of	f tim]
04 :	-. 04056	C0	
05 :	-. 74503	C1	
06 :	. 08823	C2	
07 :	2.0516	C3	
08 :	-1.8111	C4	
09 :	. 42832	C5	
13:	P95	End	
14:	P36	$\mathrm{Z}=\mathrm{X}$ * Y	
01:	43	x Loc $\sin (\mathrm{d})$	
02 :	43	Y Loc $\sin (\mathrm{d})$	
03 :	- 44	z Loc [: cos (d)]
15 :	P37	Z $=\mathrm{X}$ * F	
01:	44	X Loc $\cos (\mathrm{d})$	
02 :	-1	F	
03 :	- 44	Z Loc [: cos (d)]
16:	P32	$\mathrm{Z}=\mathrm{Z}+1$	
01 :	44	Z Loc [: cos (d)]
17 :	P39	$\mathrm{Z}=\mathrm{SQRT}(\mathrm{X})$	
01:	44	x Loc cos(d)	
02 :	44	z Loc [:cos(d)]

Above calcs $\cos (d)=\operatorname{SQRT}(1-\sin (d) * \sin (d))$

```
18: P48 Z=SIN(X)
    01: 47 X Loc latitude
    02: 45 Z Loc [:sinl*sind]
```

sine of latitude

19:	P36	$\mathrm{Z}=\mathrm{X}$ * Y
01	43	x Loc $\sin (\mathrm{d})$
02	45	Y Loc sinl*sind
03	45	z Loc [:sinl*sind]
20:	P34	$\mathrm{Z}=\mathrm{X}+\mathrm{F}$
01	47	X Loc latitude
02	90	F
03	46	Z Loc [: cosl*cosd]

| 21: 448 | $Z=S I N(X)$ |
| ---: | :--- | :--- |
| 01: 46 | X Loc cosl*cosd |
| 02: 46 | Z Loc [:cosl*cosd] |

Estimates $\cos (I)=\sin (1+90)$

```
22: P36 Z=X*Y
    01: 44 X Loc cos(d)
    02: 46 Y Loc cosl*cosd
    03: 46 Z Loc [:cosl*cosd]
23: P18 Time
    01:1 Minutes into current day (max. 1440)
    02: 0 Mod/by
    03: 49 Loc [:t ]
24: P37 Z=X*F
    01: 49 X LOc t
    02:.01667 F
    03:49 z Loc [:t ]
```

Estimate time of day as a decimal number of hours

```
25: P34 Z=X+F
    01: 49 X Loc t
    02: -12 F
    03: 50 Z Loc [:t-to ]
```

deduct solar noon

```
26: P33 Z=X+Y
    01: 50 X Loc t-to
    02: 48 Y Loc lngt. cor
    03: 50 Z Loc [:t-to ]
```

add latitude correction

```
27: P33 Z=X+Y
    01: 50 X Loc t-to
    02: 40 Y Loc eq of tim
    03: 50 z Loc [:t-to ]
```

add equation of time

```
28: P37 Z=X*F
    01: 50 X Loc t-to
    02: 15 F
    03: 51 z Loc [:sin(1) ]
```

convert to degrees

```
29: P34 Z=X+F
    01: 51 x Loc sin(1)
    02: 90 F
    03: 51 Z Loc [:sin(1) ]
```

Add 90 degrees to allow calculations of \cos using $\cos (x)$
$=\sin (x+90)$

```
30: P48 Z=SIN(X)
    01: 51 x Loc sin(1)
    02: 51 z Loc [:sin(1) ]
```

31:	P36	$\mathrm{Z}=\mathrm{X}$ * Y
01 :	51	x Loc $\sin (1)$
02 :	46	Y Loc cosl*cosd
03 :	51	z Loc [:sin(1)]
32:	P33	$\mathbf{Z}=\mathbf{X}+\mathrm{Y}$
01 :	51	x Loc sin(1)
02 :	45	Y Loc sinl*sind
03 :	51	z Loc [:sin(1)

above calculates
$\sin (l)=\sin (d) * \sin (l)+\cos (d) * \cos (l) * \cos (15(t-t o))$

33: \quad P89	If $X<=>F$
01: 51	X Loc $\sin (1)$
02: 4	$<$
03: 0	F
04: 30	Then Do

If $\sin (l)<0$ then set to zero

34 :	P30	$\mathrm{Z}=\mathrm{F}$
01:	0	F
02 :	0	Exponent of 10
03 :	51	z Loc [:sin(1)]
$35:$	P95	End
36:	P37	$\mathrm{Z}=\mathrm{X} * \mathrm{~F}$
01:	51	x Loc $\sin (1)$
02 :	1373	F
03 :	4	Z Loc [:So W m-2

Calculate S_{O}

| 37: P37 | Z=X*F |
| ---: | :--- | :--- |
| 01: 4 | X Loc So W m-2 |
| 02: 0.4 | F |
| 03: 2 Z | Loc [:Threshold] |

Calculate the threshold for sunshine

38: P95	End	
$39:$	P	End Table 3
*	A Mode	10 Memory Allocation

01: 100 Input Locations
Input locations increased to allow extra workspace

02: 64	Intermediate Locations
$03:$	0.0000
*inal Storage Area 2	
* Mode	12 Security
$01:$	0000 LOCK 1
$02:$	0000 LOCK 2
$03:$	0000 LOCK 3

CSL 337

Input Location Assignments (with comments):
Key:
T=Table Number
E=Entry Number
L=Location Number

```
T: E: L:
1: 1: 1: Loc [:W m-2 ]
3: 37: 2: z Loc [:Threshold]
1: 5: 3: Z Loc [:Sun hrs ]
1: 12: 3: z Loc [:Sun hrs ]
3: 36: 4: Z Loc [:So W m-2 ]
1: 14: 5: Z LOC [:MJ m-2 ]
3: 9: 40: z Loc [:eq of tim]
3: 10: 40: F(X) Loc [:eq of tim]
3: 12: 40: F(X) Loc [:eq of tim]
3: 6: 41: Z Loc [:day/100 ]
3: 4: 42: Loc [:clndr day]
3: 5: 42: z Loc [:clndr day]
3: 7: 43: F(x) Loc [:sin(d) ]
3: 14: 44: z Loc [:cos(d) ]
3: 15: 44: Z Loc [:cos(d) ]
3: 16: 44: z Loc [:cos(d) ]
3: 17: 44: Z Loc [:cos(d) ]
: 18: 45: Z Loc [:sinl*sind]
: 19: 45: z Loc [:sinl*sind]
: 20: 46: Z Loc [:cosl*cosd]
21: 46: Z Loc [:cosl*cosd]
22: 46: Z Loc [:cosl*cosd]
2: 47: z Loc [:latitude ] !!! User entry
3: 48: z Loc [:lngt. cor] !!! User entry
23: 49: Loc [:t ]
24: 49: Z Loc [:t ]
25: 50: Z Loc [:t-to ]
26: 50: Z Loc [:t-to ]
27: 50: Z Loc [:t-to ]
28: 51: z Loc [:sin(1) ]
: 29: 51: z Loc [:sin(1) ]
3: 30: 51: z Loc [:sin(1) ]
: 31: 51: z Loc [:sin(1) ]
3: 32: 51: z Loc [:sin(1) ]
3: 34: 51: z LOC [:sin(1) ]
```

Input Location Labels:

1:W m-2	18:	35:	52 :
2:Threshold	19:	36:	53 :
3:Sun hrs	20 :	37:	54 :
4: So W m-2	21:	38:	55:
5: MJ m-2	22:	39:	56:
6:	23:	40 : eq of tim	57 :
7:	24:	41: day/100	58 :
8:	25:	42:clndr day	59 :
9:	26:	43: sin (d)	60 :
10:	27:	44: cos (d)	61:
11:	28:	45:sinl*sind	62 :
12:	29:	46:cosl*cosd	63 :
13 :	30:	47:1atitude	64 :
14:	31:	48:1ngt. cor	65:
15:	32:	49: t	66 :
16:	33:	50 :t-to	67 :
17:	34 :	51: $\sin (1)$	68 :

